初三上册数学期中试卷及答案人教版

一、填空题(每空2分,共22分)

1.方程﹣3x2﹣2x=0的二次项系数是      ,常数项是      .

 

2.已知关于x的一元二次方程4x2+(k+1)x+2=0的一个根是2,那么k=      ,另一根是      .

 

3.若方程kx2﹣6x+1=0有两个实数根,则k的取值范围是      .

 

4.二次函数y=﹣3x2+6x+9的图象的开口方向      ,它与y轴的交点坐标是      .

 

5.已知抛物线y=﹣2(x+1)2﹣3,如果y随x的增大而减小,那么x的取值范围是      .

 

6.将抛物线y=x2向左平移4个单位后,再向下平移2个单位,则此时抛物线的解析式是      .

 

7.当k      时,抛物线y=x2﹣3x+k的顶点在x轴上方.

 

8.如图是一张长9cm、宽5cm的矩形纸板,将纸板四个角各剪去一个同样的正方形,可制成底面积是12cm2的一个无盖长方体纸盒,设剪去的正方形边长为xcm,则可列出关于x的方程为      .

 

 

二、选择题(每空3分,共24分)

9.三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为(  )

 A.14B.12C.12或14D.以上都不对

 

10.设a是方程x2+x﹣2009=0的一个实数根,则a2+a﹣1的值为(  )

 A.2006B.2007C.2008D.2009

 

11.为了改善居民住房条件,我市计划用未来两年的时间,将城镇居民的住房面积由现在的人均约为10m2提高到12.1m2.若每年的年增长率相同,设年增长率为x,则可列方程为(  )

 A.10(1+x)2=12.1B.10(1﹣x)2=12.1C.10(1+2x)2=12.1D.10(1﹣2x)2=12.1

 

12.若x1,x2是一元二次方程x2﹣5x+6=0的两个根,则x1+x2的值是(  )

 A.1B.5C.﹣5D.6

 

13.方程x2﹣kx﹣1=0根的情况是(  )

 A.方程有两个不相等的实数根

 B.方程有两个相等的实数根

 C.方程没有实数根

 D.方程的根的情况与k的取值有关

 

14.二次函数y=﹣(x﹣1)2+3的图象的顶点坐标是(  )

 A.(﹣1,3)B.(1,3)C.(﹣1,﹣3)D.(1,﹣3)

 

15.已知抛物线y=x2﹣8x+c的顶点在x轴上,则c等于(  )

 A.4B.8C.﹣4D.16

 

16.二次函数y=ax2+bx+c的图象如图所示,则下列关系式不正确的是(  )

 A.a<0B.abc>0C.a+b+c>0D.b2﹣4ac>0

 

 

三、计算题(每4分,共16分)

17.用你熟悉的方法解方程:(x﹣3)2+2x(x﹣3)=0.

 

18.用配方法解方程:2x2+1=3x.

 

19.用两种方法解方程:x2﹣6x﹣7=0.

 

 

四、简答题(共38分)

20.已知关于x的一元二次方程x2﹣mx+m﹣1=0有两个相等的实数根,求m的值及方程的根.

 

21.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本

(1)求每天的销售利润y(元)与销售单价x(元)之间的函数关系式;

(2)求出销售单价为多少元时,每天的销售利润?利润是多少?

 

22.在体育测试时,初三的一名高个子男同学推铅球,已知铅球所经过的路线是某个二次函数图象的一部分,如图所示,如果这个男同学的出手处A点的坐标(0,2),铅球路线的处B点的坐标为(6,5).

(1)求这个二次函数的解析式;

(2)该男同学把铅球推出去多远?(精确到0.01米,=3.873)

 

23.某校团委准备举办学生绘画展览,为了美化画面,在长30cm、宽20cm的矩形画面四周镶上宽度相等的彩纸,并使彩纸和画的面积和恰好是原画的面积的2倍,求彩纸的宽度.

 

 

2014-2015学年x疆巴州蒙古族高中九年级(上)期中数学试卷

参***与试题解析

 

一、填空题(每空2分,共22分)

1.方程﹣3x2﹣2x=0的二次项系数是 ﹣3 ,常数项是 0 .

考点:一元二次方程的一般形式.

分析:根据一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项可得答案.

解答:解:方程﹣3x2﹣2x=0的二次项系数是﹣3,常数项是0,

故答案为:﹣3;0.

点评:此题主要考查了一元二次方程的一般形式,关键是掌握要确定一次项系数和常数项,首先要把方程化成一般形式.

 

2.已知关于x的一元二次方程4x2+(k+1)x+2=0的一个根是2,那么k= ﹣10 ,另一根是  .

考点:一元二次方程的解;根与系数的关系.

分析:可设出方程的另一个根,根据一元二次方程根与系数的关系,可得两根之积是﹣4,两根之和是﹣k,即可列出方程组,解方程组即可求出k值和方程的另一根.

解答:解:设方程的两个根分别是x1、x2.

又∵x2=2

∴根据韦达定理,得

解得

故答案为:﹣10,.

点评:考查了一元二次方程的解,能够对方程进行适当的变形是解答本题的关键,难度不大.

 

3.若方程kx2﹣6x+1=0有两个实数根,则k的取值范围是 k≤9,且k≠0 .

考点:根的判别式.

分析:若一元二次方程有两实数根,则根的判别式△=b2﹣4ac≥0,建立关于k的不等式,求出k的取值范围.还要注意二次项系数不为0.

解答:解:∵方程有两个实数根,

∴△=b2﹣4ac=36﹣4k≥0,

即k≤9,且k≠0

点评:本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.

 

4.二次函数y=﹣3x2+6x+9的图象的开口方向 向下 ,它与y轴的交点坐标是 (0,9) .

考点:二次函数的性质.

分析:根据a=﹣3可判断函数开口的方向;令x=0,可求y的值,即可求出与y轴的交点坐标.

解答:解:∵a=﹣3<0,

∴图象开口向下;

把x=0代入函数解析式,得y=9.

∴函数与y轴的交点坐标是(0,9).

点评:二次函数,当a>0时,图象开口向上;当a<0时,图象开口向下.求与y轴的交点,也就是让x=0求出y的值.

 

5.已知抛物线y=﹣2(x+1)2﹣3,如果y随x的增大而减小,那么x的取值范围是 x>﹣1 .

考点:二次函数的性质.

分析:根据二次函数的图象开口方向及对称轴求解.

解答:解:因为a=﹣2<0,抛物线开口向下,

又对称轴为直线x=﹣1,

所以当y随x的增大而减小时,x>﹣1.

点评:主要考查了二次函数的单调性.

 

6.将抛物线y=x2向左平移4个单位后,再向下平移2个单位,则此时抛物线的解析式是 y=(x+4)2﹣2或y=x2+8x+14 .

考点:二次函数图象与几何变换.

分析:因为抛物线y=x2向左平移4个单位后,再向下平移2个单位,所以新抛物线的解析式为y=(x+4)2﹣2.

解答:解:∵向左平移4个单位后,再向下平移2个单位.∴y=(x+4)2﹣2=x2+8x+14.故此时抛物线的解析式是y=(x+4)2﹣2=x2+8x+14.

点评:主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.

 

7.当k  时,抛物线y=x2﹣3x+k的顶点在x轴上方.

考点:二次函数的性质.

分析:此题可先求出抛物线y=x2﹣3x+k的顶点坐标,又因顶点在x轴上方,所以只需令顶点纵坐标大于0即可.

解答:解:将抛物线y=x2﹣3x+k变形,得:y=(x﹣)2+k﹣,

又顶点在x轴上方,则需令k﹣>0,解不等式得:k>,

则当k>时,抛物线y=x2﹣3x+k的顶点在x轴上方.

点评:本题考查了二次函数的性质,将顶点坐标与不等式结合起来,有一定的综合性.

 

8.如图是一张长9cm、宽5cm的矩形纸板,将纸板四个角各剪去一个同样的正方形,可制成底面积是12cm2的一个无盖长方体纸盒,设剪去的正方形边长为xcm,则可列出关于x的方程为 (9﹣2x)•(5﹣2x)=12 .

考点:由实际问题抽象出一元二次方程.

专题:几何图形问题;压轴题.

分析:由于剪去的正方形边长为xcm,那么长方体纸盒的底面的长为(9﹣2x),宽为(5﹣2x),然后根据底面积是12cm2即可列出方程.

解答:解:设剪去的正方形边长为xcm,

依题意得(9﹣2x)•(5﹣2x)=12,

故填空答案:(9﹣2x)•(5﹣2x)=12.

点评:此题首先要注意读懂题意,正确理解题意,然后才能利用题目的数量关系列出方程.

 

二、选择题(每空3分,共24分)

9.三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为(  )

 A.14B.12C.12或14D.以上都不对

考点:解一元二次方程-因式分解法;三角形三边关系.

分析:易得方程的两根,那么根据三角形的三边关系,排除不合题意的边,进而求得三角形周长即可.

解答:解:解方程x2﹣12x+35=0得:x=5或x=7.

当x=7时,3+4=7,不能组成三角形;

当x=5时,3+4>5,三边能够组成三角形.

∴该三角形的周长为3+4+5=12,故选B.

点评:本题主要考查三角形三边关系,注意在求周长时一定要先判断是否能构成三角形.

 

10.设a是方程x2+x﹣2009=0的一个实数根,则a2+a﹣1的值为(  )

 A.2006B.2007C.2008D.2009

考点:一元二次方程的解;代数式求值.

分析:根据一元二次方程的解的定义,将a代入已知方程,即可求得(a2+a)的值.

解答:解:根据题意,得

a2+a﹣2009=0,

解得a2+a=2009,

所以a2+a﹣1=2009﹣1=2008.

故选:C.

点评:本题考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.

 

11.为了改善居民住房条件,我市计划用未来两年的时间,将城镇居民的住房面积由现在的人均约为10m2提高到12.1m2.若每年的年增长率相同,设年增长率为x,则可列方程为(  )

 A.10(1+x)2=12.1B.10(1﹣x)2=12.1C.10(1+2x)2=12.1D.10(1﹣2x)2=12.1

考点:由实际问题抽象出一元二次方程.

专题:增长率问题.

分析:如果设年增长率为x,则可以根据“住房面积由现在的人均约为10m2提高到12.1m2”作为相等关系得到方程10(1+x)2=12.1.

解答:解:设每年的增长率为x,根据题意得10(1+x)2=12.1,

故选A.

点评:本题考查数量平均变化率问题.原来的数量(价格)为a,平均每次增长或降低的百分率为x的话,经过靠前次调整,就调整到a(1±x),再经过第二次调整就是a(1±x)(1±x)=a(1±x)2.增长用“+”,下降用“﹣”.

 

12.若x1,x2是一元二次方程x2﹣5x+6=0的两个根,则x1+x2的值是(  )

 A.1B.5C.﹣5D.6

考点:根与系数的关系.

分析:依据一元二次方程根与系数的关系可知,x1+x2=﹣,这里a=1,b=﹣5,据此即可求解.

解答:解:依据一元二次方程根与系数得:x1+x2=5.

故选B.

点评:本题考查了一元二次方程根与系数的关系.解答这类题学生常常因记不准确上面的根与系数的关系式而误选C.一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系为:x1+x2=﹣,x1•x2=.

 

13.方程x2﹣kx﹣1=0根的情况是(  )

 A.方程有两个不相等的实数根

 B.方程有两个相等的实数根

 C.方程没有实数根

 D.方程的根的情况与k的取值有关

考点:根的判别式.

分析:求出方程的判别式后,根据判别式与0的大小关系来判断根的情况.

解答:解:∵方程的△=k2+4>0,

故方程有两个不相等的实数根.

故选A

点评:总结一元二次方程根的情况与判别式△的关系:

(1)△>0⇔方程有两个不相等的实数根;

(2)△=0⇔方程有两个相等的实数根;

(3)△<0⇔方程没有实数根.

 

14.二次函数y=﹣(x﹣1)2+3的图象的顶点坐标是(  )

 A.(﹣1,3)B.(1,3)C.(﹣1,﹣3)D.(1,﹣3)

考点:二次函数的性质.

专题:压轴题.

分析:根据二次函数的顶点式一般形式的特点,可直接写出顶点坐标.

解答:解:二次函数y=﹣(x﹣1)2+3为顶点式,其顶点坐标为(1,3).

故选B.

点评:主要考查了求抛物线的顶点坐标的方法.

 

15.已知抛物线y=x2﹣8x+c的顶点在x轴上,则c等于(  )

 A.4B.8C.﹣4D.16

考点:待定系数法求二次函数解析式.

分析:顶点在x轴上,所以顶点的纵坐标是0.据此作答.

解答:解:根据题意,得=0,

解得c=16.

故选D.

点评:本题考查求抛物线顶点纵坐标的公式,比较简单.

 

16.二次函数y=ax2+bx+c的图象如图所示,则下列关系式不正确的是(  )

 A.a<0B.abc>0C.a+b+c>0D.b2﹣4ac>0

考点:二次函数图象与系数的关系.

分析:由抛物线开口向下得到a<0,由抛物线与y轴交于正半轴知道c>0,而称轴在y轴左边,得到﹣<0,所以b<0,abc>0,而抛物线与x轴有两个交点,得到b2﹣4ac>0,又当x=1时,y<0,由此得到a+b+c<0.

解答:解:∵抛物线开口向下,

∴a<0,

∵抛物线与y轴交于正半轴,

∴c>0,

∵对称轴在y轴左边,﹣<0,

∴b<0,abc>0,

∵抛物线与x轴有两个交点,

∴b2﹣4ac>0,

当x=1时,y<0,

∴a+b+c<0.

故选C.

点评:本题主要考查二次函数的图象和性质问题.

 

三、计算题(每4分,共16分)

17.用你熟悉的方法解方程:(x﹣3)2+2x(x﹣3)=0.

考点:解一元二次方程-因式分解法.

分析:利用因式分解法即可将原方程变为3(x﹣3)(x﹣1)=0,继而可求得此方程的根.

解答:解:∵(x﹣3)2+2x(x﹣3)=0,

∴(x﹣3)[(x﹣3)+2x]=0,

∴(x﹣3)(3x﹣3)=0,

∴3(x﹣3)(x﹣1)=0,

∴x﹣3=0或x﹣1=0,

解得:x1=3,x2=1.

点评:此题考查了因式分解法解一元二次方程的知识.此题比较简单,解题的关键是提取公因式(x﹣3),将原方程化为3(x﹣3)(x﹣1)=0的形式求解.

 

18.用配方法解方程:2x2+1=3x.

考点:解一元二次方程-配方法.

专题:计算题.

分析:首先把方程的二次项系数变成1,然后等式的两边同时加上一次项系数的一半,则方程的左边就是完全平方式,右边是常数的形式,再利用直接开平方的方法即可求解.

解答:解:移项,得2x2﹣3x=﹣1,

二次项系数化为1,得,

配方

由此可得

∴x1=1,.

点评:配方法是一种重要的数学方法,是中考的一个重要考点,我们应该熟练掌握.

本题考查用配方法解一元二次方程,应先移项,整理成一元二次方程的一般形式,即ax2+bx+c=0(a≠0)的形式,然后再配方求解.

 

19.用两种方法解方程:x2﹣6x﹣7=0.

考点:解一元二次方程-因式分解法;解一元二次方程-公式法.

分析:先把等号的左边进行因式分解,求出x的值;

先找出一元二次方程中的a,b,c的值,再根据求根公式即可得出答案.

解答:解:(1)x2﹣6x﹣7=0

(x﹣7)(x+1)=0,

x1=7,x2=﹣1;

(2)x2﹣6x﹣7=0

∵a=1,b=﹣6,c=﹣7,

∴x==,

∴x1=7,x2=﹣1.

点评:本题考查了解一元一次方程,用到的知识点是因式分解和公式法解一元二次方程,掌握公式法解一元二次方程的步骤是本题的关键.

 

四、简答题(共38分)

20.已知关于x的一元二次方程x2﹣mx+m﹣1=0有两个相等的实数根,求m的值及方程的根.

考点:根的判别式.

分析:首先根据原方程根的情况,利用根的判别式求出m的值,即可确定原一元二次方程,进而可求出方程的根.

解答:解:∵关于x的一元二次方程x2﹣mx+m﹣1=0有两个相等的实数根,

∴△=b2﹣4ac=(﹣m)2﹣4×1×(m﹣1)=m2﹣4m+4=(m﹣2)2=0,

∴m=2,

∴关于x的一元二次方程是x2﹣2x+1=0,

∴(x﹣1)2=0,

解得x1=x2=1.

点评:此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:

(1)△>0⇔方程有两个不相等的实数根;

(2)△=0⇔方程有两个相等的实数根;

(3)△<0⇔方程没有实数根.

 

21.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本

(1)求每天的销售利润y(元)与销售单价x(元)之间的函数关系式;

(2)求出销售单价为多少元时,每天的销售利润?利润是多少?

考点:二次函数的应用.

专题:销售问题.

分析:(1)根据“利润=(售价﹣成本)×销售量”列出方程;

(2)把(1)中的二次函数解析式转化为顶点式方程,利用二次函数图象的性质进行解答.

解答:解:(1)y=(x﹣50)[50+5(100﹣x)]

=(x﹣50)(﹣5x+550)

=﹣5x2+800x﹣27500

所以y=﹣5x2+800x﹣27500(50≤x≤100);

(2)y=﹣5x2+800x﹣27500

=﹣5(x﹣80)2+4500

∵a=﹣5<0,

∴抛物线开口向下.

∵50≤x≤100,对称轴是直线x=80,

∴当x=80时,y值=4500;

即销售单价为80元时,每天的销售利润,利润是4500元.

点评:此题题考查二次函数的实际应用.为数学建模题,借助二次函数解决实际问题.

 

22.在体育测试时,初三的一名高个子男同学推铅球,已知铅球所经过的路线是某个二次函数图象的一部分,如图所示,如果这个男同学的出手处A点的坐标(0,2),铅球路线的处B点的坐标为(6,5).

(1)求这个二次函数的解析式;

(2)该男同学把铅球推出去多远?(精确到0.01米,=3.873)

考点:二次函数的应用.

分析:(1)由点的坐标可以设得二次函数的顶点坐标式,再将(0,2)代入即可求解.

(2)由(1)求得的函数解析式,令y=0,求得的x的正值即为铅球推出的距离.

解答:解:(1)设二次函数的解析式为y=a(x﹣h)2+k,

由于顶点坐标为(6,5),

∴y=a(x﹣6)2+5.

又A(0,2)在抛物线上,

∴2=62•a+5,

解得:a=﹣.

∴二次函数的解析式为y=﹣(x﹣6)2+5,

整理得:y=﹣x2+x+2.

(2)当y=0时,﹣x2+x+2=0.

x=6+2,x=6﹣2(不合题意,舍去).

∴x=6+2≈13.75(米).

答:该同学把铅球抛出13.75米.

点评:本题考查了二次函数在实际生活中的应用,重点是函数解析式的求法.

 

23.某校团委准备举办学生绘画展览,为了美化画面,在长30cm、宽20cm的矩形画面四周镶上宽度相等的彩纸,并使彩纸和画的面积和恰好是原画的面积的2倍,求彩纸的宽度.

考点:一元二次方程的应用.

专题:几何图形问题.

分析:设彩纸的宽度为xcm,镶上彩纸过后的长为(30+2x)cm,宽为(20+2x)cm,根据彩纸和画的面积和恰好是原画的面积的2倍建立方程求出其解即可.

解答:解:设彩纸的宽度为xcm,镶上彩纸过后的长为(30+2x)cm,宽为(20+2x)cm,由题意,得

(30+2x)(20+2x)=2×30×20,

解得:x1=﹣30(舍去),x2=5.

答:彩纸的宽度为5cm.

点评:本题考查了矩形的面积公式的运用,列一元二次方程解实际问题的运用,一元二次方程的解法的运用,解答时根据彩纸和画的面积和恰好是原画的面积的2倍建立方程是关键.

商务达